visCompReorder
is supposed to visualise multiple component
planes reorded within a sheet-shape rectangle grid
visCompReorder(sMap, sReorder, margin = rep(0.1, 4), height = 7, title.rotate = 0, title.xy = c(0.45, 1), colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"), ncolors = 40, zlim = NULL, border.color = "transparent", gp = grid::gpar(), newpage = TRUE)
invisible
none
# 1) generate data with an iid matrix of 1000 x 9 data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3), matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3), matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3)) colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3") # 2) sMap resulted from using by default setup sMap <- sPipeline(data=data, shape=c("suprahex","trefoil")[2])Start at 2018-01-18 16:56:14 First, define topology of a map grid (2018-01-18 16:56:14)... Second, initialise the codebook matrix (163 X 9) using 'linear' initialisation, given a topology and input data (2018-01-18 16:56:14)... Third, get training at the rough stage (2018-01-18 16:56:14)... 1 out of 2 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) 2 out of 2 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) Fourth, get training at the finetune stage (2018-01-18 16:56:14)... 1 out of 7 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) 2 out of 7 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) 3 out of 7 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) 4 out of 7 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) 5 out of 7 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) 6 out of 7 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) 7 out of 7 (2018-01-18 16:56:14) updated (2018-01-18 16:56:14) Next, identify the best-matching hexagon/rectangle for the input data (2018-01-18 16:56:14)... Finally, append the response data (hits and mqe) into the sMap object (2018-01-18 16:56:14)... Below are the summaries of the training results: dimension of input data: 1000x9 xy-dimension of map grid: xdim=19, ydim=19, r=10 grid lattice: hexa grid shape: trefoil dimension of grid coord: 163x2 initialisation method: linear dimension of codebook matrix: 163x9 mean quantization error: 4.26156886077175 Below are the details of trainology: training algorithm: batch alpha type: invert training neighborhood kernel: gaussian trainlength (x input data length): 2 at rough stage; 7 at finetune stage radius (at rough stage): from 5 to 1.25 radius (at finetune stage): from 2 to 1 End at 2018-01-18 16:56:14 Runtime in total is: 0 secs# 3) reorder component planes sReorder <- sCompReorder(sMap=sMap, amplifier=2, metric="none")Start at 2018-01-18 16:56:14 First, define topology of a map grid (2018-01-18 16:56:14)... Second, initialise the codebook matrix (18 X 163) using 'linear' initialisation, given a topology and input data (2018-01-18 16:56:14)... Third, get training at the rough stage (2018-01-18 16:56:14)... 1 out of 180 (2018-01-18 16:56:14) 18 out of 180 (2018-01-18 16:56:14) 36 out of 180 (2018-01-18 16:56:14) 54 out of 180 (2018-01-18 16:56:14) 72 out of 180 (2018-01-18 16:56:14) 90 out of 180 (2018-01-18 16:56:14) 108 out of 180 (2018-01-18 16:56:14) 126 out of 180 (2018-01-18 16:56:14) 144 out of 180 (2018-01-18 16:56:14) 162 out of 180 (2018-01-18 16:56:14) 180 out of 180 (2018-01-18 16:56:14) Fourth, get training at the finetune stage (2018-01-18 16:56:14)... 1 out of 720 (2018-01-18 16:56:14) 72 out of 720 (2018-01-18 16:56:14) 144 out of 720 (2018-01-18 16:56:14) 216 out of 720 (2018-01-18 16:56:14) 288 out of 720 (2018-01-18 16:56:14) 360 out of 720 (2018-01-18 16:56:14) 432 out of 720 (2018-01-18 16:56:14) 504 out of 720 (2018-01-18 16:56:14) 576 out of 720 (2018-01-18 16:56:14) 648 out of 720 (2018-01-18 16:56:14) 720 out of 720 (2018-01-18 16:56:14) Next, identify the best-matching hexagon/rectangle for the input data (2018-01-18 16:56:14)... Finally, append the response data (hits and mqe) into the sMap object (2018-01-18 16:56:14)... Below are the summaries of the training results: dimension of input data: 9x163 xy-dimension of map grid: xdim=6, ydim=3, r=3 grid lattice: rect grid shape: sheet dimension of grid coord: 18x2 initialisation method: linear dimension of codebook matrix: 18x163 mean quantization error: 32.521897311002 Below are the details of trainology: training algorithm: sequential alpha type: invert training neighborhood kernel: gaussian trainlength (x input data length): 20 at rough stage; 80 at finetune stage radius (at rough stage): from 1 to 1 radius (at finetune stage): from 1 to 1 End at 2018-01-18 16:56:14 Runtime in total is: 0 secs# 4) visualise multiple component planes reorded within a sheet-shape rectangle grid visCompReorder(sMap=sMap, sReorder=sReorder, margin=rep(0.1,4), height=7, title.rotate=0, title.xy=c(0.45, 1), colormap="gbr", ncolors=10, zlim=c(-1,1), border.color="transparent")
visCompReorder.r
visCompReorder.Rd
visCompReorder.pdf
visVp
, visHexComp
,
visColorbar
, sCompReorder