visHexComp
is supposed to visualise a supra-hexagonal grid in
the context of viewport
visHexComp(sMap, comp, margin = rep(0.6, 4), area.size = 1, colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"), ncolors = 40, zlim = c(0, 1), border.color = "transparent", newpage = TRUE)
invisible
none
# 1) generate an iid normal random matrix of 100x10 data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10) colnames(data) <- paste(rep('S',10), seq(1:10), sep="") # 2) sMap resulted from using by default setup sMap <- sPipeline(data=data)Start at 2018-01-18 16:56:27 First, define topology of a map grid (2018-01-18 16:56:27)... Second, initialise the codebook matrix (61 X 10) using 'linear' initialisation, given a topology and input data (2018-01-18 16:56:27)... Third, get training at the rough stage (2018-01-18 16:56:27)... 1 out of 7 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 2 out of 7 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 3 out of 7 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 4 out of 7 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 5 out of 7 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 6 out of 7 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 7 out of 7 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) Fourth, get training at the finetune stage (2018-01-18 16:56:27)... 1 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 2 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 3 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 4 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 5 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 6 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 7 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 8 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 9 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 10 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 11 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 12 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 13 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 14 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 15 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 16 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 17 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 18 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 19 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 20 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 21 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 22 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 23 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 24 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) 25 out of 25 (2018-01-18 16:56:27) updated (2018-01-18 16:56:27) Next, identify the best-matching hexagon/rectangle for the input data (2018-01-18 16:56:27)... Finally, append the response data (hits and mqe) into the sMap object (2018-01-18 16:56:27)... Below are the summaries of the training results: dimension of input data: 100x10 xy-dimension of map grid: xdim=9, ydim=9, r=5 grid lattice: hexa grid shape: suprahex dimension of grid coord: 61x2 initialisation method: linear dimension of codebook matrix: 61x10 mean quantization error: 4.9630432442287 Below are the details of trainology: training algorithm: batch alpha type: invert training neighborhood kernel: gaussian trainlength (x input data length): 7 at rough stage; 25 at finetune stage radius (at rough stage): from 3 to 1 radius (at finetune stage): from 1 to 1 End at 2018-01-18 16:56:27 Runtime in total is: 0 secs# 3) visualise the first component plane with a supra-hexagonal grid visHexComp(sMap, comp=sMap$codebook[,1], colormap="jet", ncolors=100, zlim=c(-1,1))