visHexBarplot
is supposed to visualise codebook matrix using
barplot for all hexagons or a specific one
visHexBarplot(sObj, which.hexagon = NULL, which.hexagon.highlight = NULL, height = 7, margin = rep(0.1, 4), colormap = c("customized", "bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"), customized.color = "red", zeropattern.color = "gray", gp = grid::gpar(cex = 0.7, font = 1, col = "black"), bar.text.cex = 0.8, bar.text.srt = 90, newpage = TRUE)
invisible
none
# 1) generate data with an iid matrix of 1000 x 9 data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3), matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3), matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3)) colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3") # 2) sMap resulted from using by default setup sMap <- sPipeline(data=data)Start at 2018-01-18 16:56:26 First, define topology of a map grid (2018-01-18 16:56:26)... Second, initialise the codebook matrix (169 X 9) using 'linear' initialisation, given a topology and input data (2018-01-18 16:56:26)... Third, get training at the rough stage (2018-01-18 16:56:26)... 1 out of 2 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) 2 out of 2 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) Fourth, get training at the finetune stage (2018-01-18 16:56:26)... 1 out of 7 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) 2 out of 7 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) 3 out of 7 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) 4 out of 7 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) 5 out of 7 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) 6 out of 7 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) 7 out of 7 (2018-01-18 16:56:26) updated (2018-01-18 16:56:26) Next, identify the best-matching hexagon/rectangle for the input data (2018-01-18 16:56:26)... Finally, append the response data (hits and mqe) into the sMap object (2018-01-18 16:56:26)... Below are the summaries of the training results: dimension of input data: 1000x9 xy-dimension of map grid: xdim=15, ydim=15, r=8 grid lattice: hexa grid shape: suprahex dimension of grid coord: 169x2 initialisation method: linear dimension of codebook matrix: 169x9 mean quantization error: 4.27816289846339 Below are the details of trainology: training algorithm: batch alpha type: invert training neighborhood kernel: gaussian trainlength (x input data length): 2 at rough stage; 7 at finetune stage radius (at rough stage): from 4 to 1 radius (at finetune stage): from 1 to 1 End at 2018-01-18 16:56:26 Runtime in total is: 0 secs# 3) plot codebook patterns using different types # 3a) for all hexagons visHexBarplot(sMap) # 3b) only for the first hexagon visHexBarplot(sMap, which.hexagon=1)
visHexBarplot.r
visHexBarplot.Rd
visHexBarplot.pdf
sPipeline
, visColormap